The idea is that if the coin flip goes in the player’s favor, they win double their bet. After winning, they can either collect their winnings, or risk them all on another coin flip to have a chance at doubling them. The initial bet is fixed at, let’s say $1.
Mathematically, this seems like a fair game. The expected value of each individual round is zero for both house and player.
Intuitively, though, I can’t shake the notion that the player will tend to keep flipping until they lose. In theory, it isn’t the wrong decision to keep flipping since the expected value of the flip doesn’t change, but it feels like it is.
Any insight?
If both players have infinite bankrolls, but only one of them is allowed to stop the game once they are ahead, the one with the option of stopping has an advantage. They can play until they are in the lead, then stop. The reason this doesn’t work in real life is that real bankrolls aren’t infinite.
And, in real life, the house has a much larger bankroll.
I don’t know if that applies to this scenario. In this game, the player is always in the lead until they aren’t, but I don’t see how that works in their favor.
Oh wait you mean the player has to stop if they lose? That’s different.
Well, they have to start over with a $1 bet.
Once the player loses, the chain ends, and the house wins. So as long as the house can afford to keep pushing the player in to trying again, they’re going to create more opportunities for the player to return their winnings to the house.
Right, and as the chain continues, the probability of the player maintaining their streak becomes infinitesimal. But the potential payout scales at the same rate.
If the player goes for 3 rounds, they only have a 1/8 chance of winning… but they’ll get 8 times their initial bet. So it’s technically a fair game, right?
They have a 50/50 chance each round. Doesn’t matter how many rounds they’ve won.
I’m looking at the game as a whole. The player has a 1 in 8 chance of winning 3 rounds overall.
the house can only make $1 per play, and the bettor can make a functionally unlimited amount.
see the martingale strategy. you are basically sticking the house with a martingale strategy in which you get to decide when they bet.
If you have 100$, and you bet 1$ at a time, infinitely, you will lose.
More generally (simplified to assume you’re always betting the same amount):
P(ruin after X bets) = (edit: I removed my formula because it was wrong…but I’m sure you could mathematically prove a formula)