It’s not much to look at. Its case—the size of a pack of chewing gum–is connected to wires that transmit signals to a nearby panel of custom radiofrequency receivers. But most important, it’s nestled within a shiny gold cocoon called a dilution refrigerator and shielded from stray electrical signals. When the refrigerator is running, it is among the coldest places on Earth, so very close to absolute zero, less than 6 millikelvin (about −460 degrees F).
This is the right answer. It’s a big cryogenic refrigerator called a Dilution Refrigerator. It’s fancy stuff. Needs Helium-4, which is more common, and Helium-3, which mostly comes from nuclear production.
lots of fun techniques, a common one for getting down low enough where other methods become practical is stirling cryocoolers, and those are even on ebay for a few thousand (cascade refrigeration systems, and joule thompson coolers, and a few others are also used), way down past that theres stuff like weird magnetic coolers, and dilution coolers All very interesting, reading about exotic cooling methods is quite fun.
the methods required to maintain qubits are exotic.
this site mentions the refrigeration equipment youre referencing i believe https://www.pnnl.gov/news-media/new-superconducting-qubit-testbed-benefits-quantum-information-science-development
This is the right answer. It’s a big cryogenic refrigerator called a Dilution Refrigerator. It’s fancy stuff. Needs Helium-4, which is more common, and Helium-3, which mostly comes from nuclear production.
how in the absurd fuck do they get something that cold
lots of fun techniques, a common one for getting down low enough where other methods become practical is stirling cryocoolers, and those are even on ebay for a few thousand (cascade refrigeration systems, and joule thompson coolers, and a few others are also used), way down past that theres stuff like weird magnetic coolers, and dilution coolers All very interesting, reading about exotic cooling methods is quite fun.
With a refrigerator.