So its a case of it not working on irrational numbers, its just that we cant prove it because we cant calculate the multiplication of 2, right?
The issue is the proving part. We can’t use repeated addition trickery (at least not in an obvious way) to show a product of two irrational negative numbers is positive. It’s definitely still true that a product of two negative numbers is positive, just that proving it in general requires a different approach.
Somehow, my mind has issues with the e*pi = ke. Id say that ke = e * pi is impossible because k is an integer and pi isnt, no? It could never be equals, i think.
Yes this is correct. The ke example is for a proof by contradiction. We are assuming something is true in order to show it forces us to be able to conclude something ridiculous/false. Since the rest of our reasoning was correct, then it must have been our starting assumption that was wrong. So, we have to conclude our starting assumption was wrong/false.
There are some subtleties to this particular topic that are worth mentioning. I would be careful to distinguish between constructing vs defining here.
The usual definition of the irrationals works roughly like this:
You have a set of numbers R which you call the real numbers. You have a subset of the real numbers Q which you call the rational numbers. You define a real number to be irrational if it is not a rational number.
This is perfectly rigorous, but it relies on knowing what you mean by R and Q.
Both R and Q can be defined “without” (a full) construction by letting R be any complete ordered field. Such a field has a multiplicative identity 1 by definition. So, take 0 along with all sums of the form 1, 1+1, 1+1+1 and so on. We can call this set N. We can take Z to be the set of all elements of N and all additive inverses of elements of N. Finally take Q to be the set containing all elements of Z and all multiplicative inverses of (nonzero) elements of Z. Now we have our R and Q. Also, each step of the above follows from our field axioms. Defining irrationals is straightforward from this.
So, the definition bit here is not a problem. The bigger issue is that this definition doesn’t tell us that a complete ordered field exists. We can define things that don’t exist, like purple flying pigs and so on.
What the dedekind cut construction shows is that using only the axioms of zfc we can construct at least one complete ordered field.