The Banana Pi BPI-M7 single board computer is equipped with up to 32GB RAM and 128GB eMMC flash, and features an M.2 2280 socket for one NVMe SSD, three display interfaces (HDMI, USB-C, MIPI DSI), two camera connectors, dual 2.5GbE, WiFi 6 and Bluetooth 5.2, a few USB ports, and a 40-pin GPIO header for expansion.
Lmao, do your research before commenting stuff like that.
Here’s how things look on the HP model above:
Model name: Intel(R) Core(TM) i5-8500T CPU @ 2.10GHz BIOS Model name: Intel(R) Core(TM) i5-8500T CPU @ 2.10GHz To Be Filled By O.E.M. CPU @ 2.0GHz BIOS CPU family: 205 CPU family: 6 Model: 158 Thread(s) per core: 1 Core(s) per socket: 6 Socket(s): 1 Stepping: 10 CPU(s) scaling MHz: 23% CPU max MHz: 3500.0000 CPU min MHz: 800.0000
Obviously that thing wont be running at base frequency while idling. Here is one if units right now:
analyzing CPU 0: driver: intel_pstate CPUs which run at the same hardware frequency: 0 CPUs which need to have their frequency coordinated by software: 0 maximum transition latency: 4294.55 ms. hardware limits: 800 MHz - 3.50 GHz available cpufreq governors: performance, powersave current policy: frequency should be within 800 MHz and 3.50 GHz. The governor "powersave" may decide which speed to use within this range. current CPU frequency is 800 MHz.
See, it scales down to 800Mhz with a watt meter I remember it translated to idling at around 10-11W.
I never said it was better than a Pi, I just said the difference is not worth it and you’re still ignoring the fact that i5-8500T will be able to do more work than the Pi5 bellow or at 2.1 GHz - not surpassing the 35 W TDP.
Okay got it, so you compared the highest possible TDP on a Pi with the average/idle TDP on a desktop, and you’re acting like that’s a fair comparison. Thanks for clearing that up!
No… I compared the highest possible TDP on a Pi with with the average TDP of a “T-CPU” (power-optimized) running at full load and I concluded by saying a realistic idle consumption is 11W.
Look I’m sure the Pi does a lot better than 11W idle, but at those such low consumptions is is mostly irrelevant. I also added that given load X (equivalent to the Pi CPU at max load) the Intel CPU will make make it without reaching even the 35W while the Pi is going to be running at a full 27W.
TDP != Power consumption.